

A comprehensive guide to using,
programming & flashing the BITtalino R-IoT

WiFi sensor module
Ver 1 (March-July 2017)

Emmanuel FLETY - Prototypes & Engineering Team (PIP) - IRCAM
Edition 1.0 - March 2017

Introduction
The R-IoT module is 7th generation of IRCAM's wireless sensor digitizing
unit, an essential tool linking motion sensing, gestural recognition and
Live Performance Arts.

Since 2001, IRCAM aimed to provide low latency, high data-rate &
resolution and stage compatible devices capable of streaming gestural
information to the computer from multiple performers. As development
progressed, we also targeted a smaller form factor and longer runtime.

Lastly, as the Makers movement arose in 2007-2008, we also privileged a
platform approach for our devices, allowing a standardized firmware
development and upload scheme to allow collaborators to easily work and
customize the unit without dealing with low-level, microcontroller detailed
programming.

As a result, we selected a core processing unit capable of implementing all
those aspects The R-IoT module is based upon the CC3200 chip from
Texas Instrument. Its core feature is compatible with Energia, a branch of
the Arduino IDE that allows programming TI processors with the easiness
of the Arduino look & feel.

http://energia.nu/

Just like the Arduino system for Atmel microcontrollers, Energia is
essentially a code warper on top of the C API from Texas Instrument to
program the core processor though R-IoT can still be programmed with TI
tools chain & Code Composer.

The CC3200 is actually the combination of two ARM processors, one taking
care of the WiFi modem and network stack, the second being the
application processor running the user code.

The CC3200 embeds a bootloader triggered upon reset / power on by an
external momentary switch. The firmware is uploaded to the chip using a
simple a 3.3V USB serial cable such as the TTL-232R-3V3 from FTDI
(Farnell part # 1329311).

BITalino R-IoT particulars
The BITalino R-IoT is a slightly different version of the former R-IoT from
IRCAM's lab team ISMM. Our partnership with pluX aimed to refine a few
aspects of the original design to match with other populations of users,
and some new use cases too.

The BITalino R-IoT was made compatible with the BITalino ecosystem and
sensor platform as a WiFi transmitter, bridge and data hub. It captures
pre-digitized BITalino sensors and packs them in an Open Sound Control
message in addition of the IMU data, which are sent in a separate OSC
message.

In addition, a new form factor of the module allows for soldering
additional sensors or accessories (switch, LED, piezo) to expand its
possibilities. Finally, an RGB LED was added for an enhanced visual
interaction with the user, easing the boot & connection sequence (wifi
connection, streaming).

The BITalino R-IoT exports only some of the available I/O's from the
CC3200 for matters of size / form factor. It remains small enough to be
installed anywhere, on the body, on an instrument or in an object. With
the additional I/Os, which include 3 analog inputs and 3 PWM output and
10 GPIOs total (including the RGB LED), it can be adapted to various
contexts.

An i2c bus is also exported allowing for a complete chain of accessories to
be talked to, from LED controllers to additional sensors or I/O extenders.

The BITalino R-IoT also embeds a 9 axis digital sensor featuring a 3-axis
accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, allowing
for instance the onboard computation of the absolute orientation of the
module in space. The sensor is attached to the SPI port to grab the 16 bit
motion data at high speed.

The IMU sensor data are locally processed, analyzed and streamed over
WiFi (UDP, Open Sound Control) by the module using its firmware, a
program compiled using the Energia tool chain.

Lastly, the BITalino R-IoT edition is meant to be used either as a
replacement of the Bluetooth module provided with the BITalino sensor
board or as a standalone using (as a wireless WiFi IMU). The pinout of the
module reflects this specificity compared to the original R-IoT module and
features a 6 pin 2.54mm header that provides the power supply and serial
communication to the BITalino board or to a FTDI USB serial cable (with
crossed / null-modem wiring).

To ease the reading of this document, we will refer from now to the
BITalino R-IoT as R-IoT.

Module pinout and wiring

Front View

(-)
GND

GPIO3 (+)
VIN

TXO RXI RTS
(GND)

(-)
GND

(+)
VIN

GPIO4 GPIO5 GPIO10 GPIO11 +3.3V
(reg)

GPIO24 GPIO23

GPIO28 GND

RGB LED

Flash Mode (SOP2)

Reset Switch

Back View

Optional Battery
connector
(Stand Alone Mode)

Optional Switch

Antenna

Installing and powering R-IoT with BITalino

Battery Charging

The battery should be charge using the accessory (right on the above
picture) using the provided USB cabe.

Install

The charged battery must be then connected to the R-IoT

Understanding the physical platform
We have developed the R-IoT platform using initially the Texas Instrument
CC3200 launchpad, a development board for which Energia has
standardized and named / numbered all the I/Os based on the physical
header and pinhead connectors of the dev board.

http://energia.nu/pin-maps/guide_cc3200launchpad/

In order to remain 100% compatible with the former pin numbering, we
kept the same numbering logic of the CC3200 I/Os in our code and
firmware. The following picture details which I/Os are exported along with
their #. That number is the same used to access to the physical pin from
the program written in Energia.

However, to keep the I/O number user's friendly, a series of #define
provide the translation of the GPIO number and the launchpad board.

R-IoT configuration & setup

Default configuration and OSC messages
R-IoT default firmware implements a WiFi Access Point (AP mode) and a
Web server to configure is wireless parameters such as the WiFi network
name (SSID), the Open Sound Control UDP port to send data to, the
recipient computer IP address etc.

The default SSID is "riot"; for a quick install, the simplest is to
configure your router and computer rather than edit the R-IoT
configuration in first place (see further).

By default, The R-IoT will be sending OSC data to the DEST IP
(destination IP address) 192.168.1.100 on port 8888. The other default
parameters are reported on page 9 (bottom figure)

The OSC message structure is described in section R-IoT Streaming,
Sensor Fusion and Analysis, on page

Changing the default configuration

To trigger the configuration mode, GPIO28 must be shorted when the
module is powered up.

A switch ca be wired to those pins or, if only a casual configuration is
required, a pair of sharp tweezers can used to short the 2 pads.

The onboard RGB led will turn red and will start flashing rapidly. After one
second, it will turn blue then green indicating the R-IoT has created the
WiFi access point.

The Wifi network name can be easily identified in the list of available SSID
and starts with RIOT (in uppercase) followed by a 4 digit random number.

§ Set your computer in DHCP and
lookup the wifi network proposed
by the module

§ Connect to the network (no
security needed)

§ Open your web browser and open
the URL http://192.168.1.1

§ That should take you to the web
page hosted by the module where
you can configure its network
behavior & parameters

The R-IoT connects to the network name set in the SSID field above. It
should match the network name set in your WiFi access point (see further
in this document for configuring your AP).

Most of the default settings should work with your WiFi infrastructure. We
suggest keeping the R-IoT in station mode (AP is provided by the
infrastructure router).

If some security is absolutely needed, WPA-2 can be enabled along with a
password or passphrase, however security uses more bandwidth and can
be trickier to configure for novice users. If the goal is to prevent unwanted
access to the local network during sensor streaming and collection, it is
actually easier to setup a MAC address filtering in the Access Point itself.
In addition, the SSID beaconing can be disabled (also on the Access point)
to prevent finding the name of the network, therefore allowing connection
only to parties who know the said SSID name.

In DHCP mode, there's no need to fill up the gateway and mask fields,
those will be provided by their DHCP server.

The only other important parameters to be chosen are the recipient IP
address (the IP of the computer receiving the data) and the UDP port.

The ID is used to ease the data routing when identifying the R-IoT in the
software application. We suggest using both a port and ID based routing
in order to ensure the proper identification of the data flow source. A
simple module numbering / convention makes it easy to remember.

For example :

§ R-IoT module #0 uses port #8000

§ R-IoT module #1 uses port #8001

§ R-IoT module #8 uses port #8008

etc..

In the case the software application has limited flexibility for choosing the
UDP port (or when there's a single UDP port available for all input flows),
the ID is then use to separate and route the different modules.

Once the parameters are all set in the configuration page, click submit and
setup will be saved in the non-volatile memory of the R-IoT module, which
can be rebooted to apply the new settings (cycle the power supply or
press the reset switch).

WiFi and Computer setup
As explained above, the R-IoT can work (almost) out-of-the-box once the
computer and and WiFi access point have been configured to work
together.

The R-IoT can operate on both a local network or over internet if
necessary. As already said above, the R-IoT it will be sending data to its
DEST IP (destination IP address), identified in the field of the
configuration web page, which is defaulted to 192.168.1.100.

Therefore, a local network must be created using the AP router, and the
proper destination address set on the computer.

Change Computer IP
On MacOS, go in the system preferences then network preferences. Select
the ethernet connection and change the IP address method to "manually"
and set it to 192.168.1.100. Set the network mask to 255.255.255.0.

On Windows, use the network control center and adjust the card
parameter (select the ethernet connection then TCP/IP parameter) and
use the same values as above.

On both operating systems, you can also use network profiles that allows
quick switching between your regular internet configuration (ie using
DHCP for most of us) and a dedicated sensor configuration to play with
the R-IoT over a local network (using a manually set IP address). MacOS
has a profile system in its network preferences. On Windows you might
have to install a free software to manage the profiles, like NetsetMan.

If you further need to change the destination IP, just make sure the R-IoT
module is also configured to send to the right one. Obviously, the selected
IP address must match the network base address (192.168.1.XXX in our
case) so that the OSC messages reach the recipient.

Configure the WiFi Access point and router
We open a can of worm here as it's not "so trivial" for non-experimented
users. Configuring a device IP address while not knowing which IP address
has been already assigned to it makes the whole thing more complicated
than it looks at first glance.

To make it more confusing each brand or manufacturer tend to have its
own default configuration. We will attempt to explain the configuration
process in layman's words but you will possibly need to refer to the user's
manual of the Access Point you've purchased to find out about the
defaults.

Access the WiFi Access point the first time
An access point is most of the time pre-configured to be only a very few
steps away from running out-of-the-box. The essential information to
know (provided by the user's manual of the device) is its IP address, so
that you can connect to the device configuration page using your favorite
browser.

When taken straight out of the box, the AP is usually configured with
DHCP enabled for clients and with a fixed IP address which can be (most
of the time) 192.168.1.1 or 192.168.0.1 or in the case or the mini TP-
link MR3020 3G/Wifi router, 192.168.0.254.

If the AP indeed provides a DHCP service, you can leave your default
configuration (like when using Internet). If the AP doesn't use DHCP, you
will need a manual address to be able to find it on the local network. In
the example above, you would use for instance 192.168.0.XXX where the
final IP address number would be anything between 1 and 253.

Once you're all set, you can access the configuration page of the AP, open
your browser and connect to the default address of the device
(192.168.0.254 in the example above).

You will be usually prompted for a login and password which is explicitly
provided in the AP user's manual. The TP-link either ship with
admin/admin or admin (login) and no password (leave blank).

The default configuration of R-IoT is to connect to a computer with the
fixed IP address 192.168.1.100. If the router / AP configuration is set to
192.168.0.1, there will be an address mismatch, therefore go in the
Network -> LAN page and change the AP address to 192.168.1.1 or
192.168.1.254 which is kind of standard

That will usually require a reboot of the AP, proceed and log in once again.
– Tune the DHCP settings. Most of the time the DHCP will be active on
addresses from 192.168.1.100 to 199. Change this from 110 to 150,
anything to avoid having the default destination IP address
(192.168.1.100) to be in the DHCP lease pit. Alternatively you can leave it
in the DHCP area and reserve the address based on the MAC address of
your computer (see DHCP address reservation)

Finally go in the Wireless settings, change the SSID of your network. If
you are using the R-IoT defaults, use riot as the network name.
Select a wifi channel that is possibly different than your neighbour. Finally,
go in the security section and disable encryption (WPA2 encryption is
supported but not recommended on first use).

Once the router is configured with this 192.168.1.xxx address scheme and
DHCP, the computer IP address can be set to 192.168.1.100, the default
destination address the R-IoT module sends data to.

Local Network Conventions and Standards
This IP address configuration might sound confusing at first but you won't
need to go back to it most of the time. You've just created what is
possibly your first local network (congratulations !) and moving between
Internet and your sensors will soon become some easy gym !

There's no absolute standard on what to use as your IP address and local
network IP scheme. "Our" IRCAM standard using a 192.168.1.100
recipient IP address inherits from the hardware we designed back in 2004
using Linksys WiFi routers which were on 192.168.1.XXX by default.

Moreover, another classic network numbering uses the scheme
10.0.0.XXX or similar. The important thing is to understand your 3 devices
(the R-IoT, the wifi access point and the computer) must be on the same
scheme to be able to "see each other". In addition, the R-IoT must know
to which address it has to send data to (the computer IP).

Ideally you will label your AP with a stiff sticker to remember its IP and
find an easy way to remember the ID and port configuration of your R-IoT
module.

Once all set, the best practice is to keep the AP and the R-IoT modules
paired and stored together to avoid any mismatch.

R-IoT Streamin, Sensor Fusion and Analysis

Sensor fusion
Calibration of the sensors and the Data fusion allowing for computing the
quaternions and Euler angles are provided. The data fusion is
implemented using the open-source code provided by Sebastian
Madgwick1.

R-IoT code repository

Several code examples dedicated to the R-IoT platform are available on
the Bitalino GIT repository https://github.com/BITalinoWorld and on
Ircam's GIT repository: https://github.com/Ircam-R-IoT

The repository contains the main firmware, which achieves several
analysis on the sensor data and allow the configuration of the module (IP
address, UDP port, module ID) via a web server or the USB serial port.

Other simpler examples show how to write dedicated code for the R-IoT
platform for specific motion analysis for instance.

Being a development platform, the R-IoT module role isn't bound to
motion analysis or sensor data streaming. Using the additional I/Os and
analog input and the WiFi modem, the unit can be turned into an efficient
Internet Of Things (IoT) object, a miniature web server, a car alarm or a
plant watering system.

Receive sensors data from the module
Below is an data receiving in max-msp. When used along with BITalino
sensors, the module forges 2 single OSC packets containing all the
exported data (IMU + BITalino). When used in standalone mode, only the
IMU data are streamed within a single OSC message.

The IMU OSC message starts with /<ID>/raw followed by a list of 21
float numbers that split as the following (physical units sent as I.S. units)

- 3 axis accelerometer (1 float per axis) {-8 ; +8} g
- 3 axis gyroscope {-2 ; +2} °/s
- 3 axis magnetometer {-2 ; +2} gauss
- Temperature °C

1 See http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/ for more details

- Switch (GPIO28) {0 / 1}
- Analog Inputs (GPIO3 & GPIO4) {0 ; 4095}
- Quaternions {-1 ; 1}
- Euler Angles and Heading {-180 ; 180} °

The BITalino OSC message starts with /<ID>/bitalino followed by a list
of 11 integer numbers that split like the following:

- Sequence number {0 ; 15}
- 4 digital inputs I1 to 14 {0 ; 1}
- 6 analog inputs A1 to A6 {0 ; 1023}

Below an example Max/MSP patch shows the easiness of receiving and
splitting the data flow :

Max abstractions for the R-IoT Bitalino

Several abstractions for Max (Cycling’74) are provided in the github
https://github.com/Ircam-R-IoT

For example the following abstraction analysis-example.maxpat shows
example of various small abstraction that can be used to transform the
raw accelerometer and gyroscope in intensity parameters and detecting
kicks. These abstraction uses the free Max library MuBu available here:
http://forumnet.ircam.fr/product/mubu/

Programming the R-IoT

Install the Energia IDE

1. visit http://energia.nu/ and look for the download section

2. download energia version 17

3. On windows, simply unzip the Energia folder on your main hard
drive. On Mac, place the folder-program in the Application folder.

Install the USB serial port driver
The R-IoT unit uses an external USB serial port to dialog with the
computer, such as the TTL-232R-3V3 from FTDI (Farnell part # 1329311).

Install the drivers by visiting FTDI download section (look for VCP driver)

 http://www.ftdichip.com/Drivers/VCP.htm

On windows, it will create a COM port. On Mac OS, the user sometimes
must create the port by going in the network preferences (select standard
NULL modem).

Customize the IDE
In order to compile the "full" firmware (currently named BITalino R-IoT
1.8), the default linker file used by the Energia tool chain must be
modified as the reserved heap size / stack is too high when compiling big
programs.

On windows:

• open the location of your Energia folder, such as C:\Program Files
(x86)\energia-0101E0017\

• keep going into hardware\cc3200\cores\cc3200

• edit the file cc3200.ld

On Mac OS:

• open the location of your Energia folder, usually in the Application
folder

• OSX applications are actually a folder. Right click on the app icon
and select "show package contents"

• browse to Contents/Resources/Java/hardware/cc3200/cores/cc3200

• edit the file cc3200.ld

In the .ld file, simply edit the first line and change the heap size to
0x0008000 and save the file:
HEAP_SIZE = 0x0007500;

Install the Firmware and Examples
The full firmware uses 2 libraries that need to be installed to allow
compiling the code : the SFLS library (File System for the CC3200 in order
to retain parameters in non volatile memory) and the Bitalino basic library
(a small wrapper to ease talking to the BITalino hardware).

Those libraries must be placed in the Documents\Energia\libraries folder
(PC or Mac).

Use Energia IDE
Launch Energia. A blank sketch appears. A sketch is composed of two
essential functions, setup() and loop() which is equivalent to the main
function in traditional C language. Energia, just like Arduino uses C and
C++, along with a basic API and set of classes to access the hardware in
what became the Arduino standard.

https://www.arduino.cc/en/Reference/HomePage

The setup function, called prior the main loop, is used to configure the
module hardware, default behaviors and everything that requires some
initialization before executing the main program.

Once returning from the setup function, the loop function is called
repetitively and is equivalent to any traditional endless program loop used
on embedded platforms (a while(1) statement within the main function).

Below an example of blinking endlessly the red LED of the module (GPIO
I/0 #9, launchpad pin 29):

Before compiling, select the proper target in the Tools -> Board menu and
select the launchPad w/ CC3200 (80 MHz).

To compile to program, simply click on the left-most icon (tick).

Flash the firmware
To flash the code on the platform first plug the USB serial cable in a USB
port then select the matching COM port in Energia Tool->Serial port menu.

With the module powered on, even already executing the code present in
the chip, press both the flash and reset switches and click on the upload
icon (arrow). It will first compile the code. Once compiling is over, the
"uploading" text will be printed above the console. Release the reset
switch while keeping the flash switch pressed. After a while, you'll get a
done uploading message with the following log in the console of the IDE.

The DEBUG write fail messages are normal, as the bootloading program
tries also to set the chip in debug mode while our platform doesn't have
any JTAG debugger / port exported.

Once there, the module can be reset (cycle the on-off switch, or press the
reset onboard momentary switch) to leave flashing mode and execute the
freshly uploaded code. With the above code, the blue LED should flash
once per second.

Acknowledgements
This R-IoT has been developed initially by the ISMM and PiP teams at
IRCAM-Centre Pompidou (STMS Lab IRCAM-CNRS-UPMC) within the
CoSiMa project (funded by ANR) and the H2020 MusicBricks and Rapid-
Mix projects funded by the European Union’s Horizon 2020 research and
innovation programme.

The Bitalino R-IoT has been developed as a collaboration between IRCAM
and PluX, with the support of from the European Union’s Horizon 2020
research and innovation programme under grant agreement N°644862
RAPID-MIX.

