

A comprehensive guide to programming &

flashing the R-IoT wifi sensor module

The R-IoT module is based upon the CC3200 chip from Texas Instrument.
Its core feature is to be compatible with Energia, a branch of the Arduino

IDE that allows programming TI processors with the easiness of the
Arduino look & feel.

http://energia.nu/

Just like the Arduino system for Atmel microcontrollers, Energia is

essentially a code warper on top of the C API from Texas Instrument to
program the core processor though R-IoT can still be programmed with TI

tools chain & Code Composer.
The CC3200 is actually the combination of two ARM processors, one taking

care of the WiFi modem and network stack, the second being the
application processor running the user code.

The CC3200 embeds a bootloader triggered upon reset / power on by an

external momentary switch. The firmware is uploaded to the chip using a
simple UART available as a USB serial port.

The R-IoT exports only some of the available I/O's from the CC3200 for

matters of size / form factor. While not exactly a hacker friendly board, it
remains small enough to be installed anywhere, on the body, on an

instrument or in an object. With the additional I/Os which include 2 analog
inputs and 1 PWM output, it can be adapted to various contexts.

The i2c bus is also exported allowing a complete chain of accessories to be
talked to, from LED controllers to additional sensors or I/O extenders.

The R-IoT also embeds a 9 axis digital sensor featuring a 3-axis

accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, allowing
for instance the onboard computation of the absolute orientation of the

module in space. The sensor is attached to the SPI port to grab the 16 bit

motion data at high speed.

The sensors data are locally processed, analyzed and streamed over WiFi
(UDP, Open Sound Control) by the module using its firmware, a program

compiled using the Energia tool chain.

R-IoT code repository
Several code examples dedicated to the R-IoT platform are available on

Ircam's public GIT repository
https://github.com/ircam-rnd

The repository contains the main firmware, which achieves several

analysis on the sensor data and allow the configuration of the module (IP

address, UDP port, module ID) via a web server or the USB serial port.
Other simpler examples show how to write dedicated code for the R-IoT

platform for specific motion analysis for instance.

Being a development platform, the R-IoT module role isn't bound to
motion analysis or sensor data streaming. Using the additional I/Os and

analog input and the WiFi modem, the unit can be turned into an efficient
Internet Of Things (IoT) object, a miniature web server, a car alarm or a

plant watering system.

Understanding the physical platform

We have developed the R-IoT platform using initially the Texas Instrument
CC3200 launchpad, a development board for which Energia has

standardized and named / numbered all the I/Os based on the physical

header and pinhead connectors of the dev board.

http://energia.nu/pin-maps/guide_cc3200launchpad/

In order to remain 100% compatible with the former pin numbering, we
kept the same numbering logic of the CC3200 I/Os in our code. The

following picture details which I/Os are exported along with their #. That

number is the same used to access to the physical pin from the program
written in Energia.

Power switch
(off-left / on-right)

Batt -

Batt +

Antenna

I2C bus

export (requires

4.7k pullups to 3.3V
on slave side)

µUSB - recharge,

flash firmware,

serial port for

configuration &

debug

Charging

LED (red)

Diag / power

LED (blue).
 I-O 4

Short to enter

FLASHING /
Prog mode

GPIOs

Reset

GP switch (I-O 30)

31 (I-O-PWM)

32 (I-O-PWM)

Battery voltage
monitoring (I-O 33)

As an example, using the blue LED pin as an output and turning it on in

Energia would be done with those 2 lines :

pinMode(4, OUTPUT);
digitalWrite(4, HIGH);

Programming the R-IoT

Install the Energia IDE

1. visit http://energia.nu/ and look for the download section
2. download energia version 16

3. On windows, simply unzip the Energia folder on your main hard
drive. On Mac, place the folder-program in the Application folder.

Install the USB serial port driver
The R-IoT unit uses a FTDI serial port. Install the drivers by visiting FTDI
download section (look for VCP driver)

http://www.ftdichip.com/Drivers/VCP.htm

On windows, it will create a COM port. On Mac OS, the user must create
the port by going in the network preferences (select standard NULL

modem).

Customize the IDE
In order to compile the "full" firmware (currently named R-IoT 1.4), the

default linker file used by the Energia tool chain must be modified as the
reserved heap size / stack is to high when compiling big programs.

On windows:

• open the location of your Energia folder, such as C:\Program Files
(x86)\energia-0101E0016\

• keep going into hardware\cc3200\cores\cc3200
• edit the file cc3200.ld

On Mac OS:

• open the location of your Energia folder, usually in the Application

folder
• OSX applications are actually a folder. Right click on the app icon

and select "show package contents"
• browse to Contents/Resources/Java/hardware/cc3200/cores/cc3200

• edit the file cc3200.ld

In the .ld file, simply edit the first line and change the heap size to
0x0008000 and save the file:
HEAP_SIZE = 0x0008000;

Use Energia IDE
Launch Energia. A blank sketch appears. A sketch is composed of two

essential functions, setup() and loop() which is equivalent to the main
function in traditional C language. Energia, just like Arduino uses C and

C++, along with a basic API and set of classes to access the hardware in

what became the Arduino standard.

https://www.arduino.cc/en/Reference/HomePage

The setup function, called prior the main loop, is used to configure the
module hardware, default behaviors and everything that requires some

initialization before executing the main program.
Once returning from the setup function, the loop function is called

repetitively and is equivalent to any traditional endless program loop used
on embedded platforms (a while(1) statement within the main function).

Below an example of blinking endlessly the blue LED of the module (I/0
#4):

Before compiling, select the proper target in the Tools -> Board menu and
select the launchPad w/ CC3200 (80 MHz).

To compile to program, simply click on the left-most icon (tick).

To flash the code on the platform first plug the unit on a USB port then
select the matching COM port of the R-IoT

With the module powered on, even already executing the code present in
the chip, keep the flashing switch pressed and click on the upload ircon

(arrow). It will first compile the code then self reset the chip into
bootloading mode. After a while, you'll get a done uploading message with

the following log in the console of the IDE.
Sometimes, if the bootloader cannot be triggered properly, first click on

the upload after pressing on both the flashing switch and the reset. Keep

the flashing switch pressed, and release only the reset switch once
Energia moves from compiling to uploading stage in the log console.

The DEBUG write fail messages are normal, as the bootloading program
tries also to set the chip in debug mode while our platform doesn't have

any JTAG debugger / port exported.

Once there, the module can be reset (cycle the on-off switch, or press the

reset onboard momentary switch) to leave flashing mode and execute the

freshly uploaded code. With the above code, the blue LED should flash
once per second.

